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Numerical Calculation of Steady Two-dimensional
Axl-symmetrical Turbulent Boundary Layer
of a Compressible Fluld

Wang Ying-shih

(Institute of Mechanlcs, Academia Sinica)

Thlis paper employed a momentum equation
expressed by the stress tensor to derive the momen-
tum equation of a non-rotational steady axi-
symmetrical turbulent boundary layer of a compressible
fluid in the axi-symmetrical coordinate system. It
was found that if the flow in the duct was to be
treated as viscous fluld everywhere then the curva-
ture of the duct and the rate of variation of the
curvature along the direction of the flow cannot be
too large. This has not been proven in any existing
literature.

Based on the set of equations proposed in this
paper, we complled a program and computed an example.

SYMBOLS

A cross-sectional area

A, B, C coefficients of ¢ difference equations

Au’ Bu’ Cu coefficients of the velocity u difference
equations

A', B! coefficlients of transformation

a, b coefficlents of the conduction terms in the
conventional conservation equations

¢ coefficlient of the diffusion term in
conventional conservation equations.

d source term in the conventional conservation
equations

P! friction face per unit length of the wall on
the fluid
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H
h

i

hl, h2, h3
J
1l
ﬁn

my

coefficients of relevant terms in the
derivation of the difference equations

heat of formatlion of the 1th
enthalpy

Lame coefficient

flux in the positive y direction
mixing length

mass transfer rate

mass fraction of chemical reaction
composition

number of nodal points crossing the
stream line

pressure intensity
gas constant

relevant coefficients of the source terms in
the difference equation of velocity u.

absolute temperature

velocity component corresponding to the
x-direction

veloecity vector

velocity component corresponding to the y
direction, velocity component corresponding
to the r direction

veloclty componernts with respect to the
o, B, Y 1increasing direction

axl-symmetrical coordinate system

characteristic thickness of the boundary
layer

conventional orthogonal coordinate system
curvature at boundary I

component

stress tensor
viscous stress tensor

Kronecker 3§

dynamic viscosity coefficent
density

Prandtl number

Schmidt number
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eff

shear stress

conventional strain quantity
flow function

non-dimensional flow function
refer to Filgure 1 for definition
superscript

retardation value

subscript

in the duct

nodal polnts controlling the difference
on the volumetric boundary

outer boundary
occupled by the fluid
thermal

inner boundary
chemlical composition 1
turbulent

effective
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In the actual fluild flow process, especially under heat
transfer and mass transfer conditions, the effect of viscosity
is very important. Furthermore, most of the viscous flow
process 1s a turbulent flow. Therefore, in order to solve
thils type of a flow process perfectly it must begin with the
solution of the turbulent viscous flow equation set. However,
the work load involved in obtaining solution to this set of
equations is rather large. Until the late sixties with the
development of computational methods and computers it was then
possible to work iIn this area.

The viscous flow problem can be divided into viscous flow
with return flow and the boundary layer flow without return
flow. These two types of flow have different types of basic
equations., Their solution and the treatment of boundary condi-
tions are not the same[l'3]. This paper mainly discussed the
calculation of fluld field of the turbulent boundary layer of a
compressible fluild in a two~-dimensional axl-symmetrical coordi-
nate system.

Basic Equations and Discussion of the Content

When a compressible fluid undergoes non-rotational
symmetrical flow in a axl-symmetrical coordinate system
shown in Figure 1, the boundary layer kinetic equations
steady' state are shown as follows (detalled derivation
Appendix 1):

Figure 1. Axi-symmetrical coordinate system.
boundary, 2. axis of symmetry.




continulity equation 8 (oru) + 51 Cpre) = 0 (1)
Oz 8y ‘
8 [+) 1 O d
momentum equation pu 3:- + o0 —6_: - 7'5;'(") - ;‘:' (2)

mass transfer equation

3 9 4 (3)
energy equation 9h° o 198 T3 - (4)
e 0080 (s Sra-e)]

If the fluid satisfies the conditlons of a gas completely,
then

P

If we neglect the variation of Cp for each component and

also neglect v2, then the stationary enthalpy can be defined

as:

» 3
h‘aC'T"' ‘ZHlml+-§- (6)

The above equations are applicably in the laminar flow
region of the boundary layer as well as in the turbulent region
of the boundary layer. When it 1s used for turbulent boundary
layer, all the physical quantities should be expressed using
the time average values.

At the moment let us assume that the momentum, mass trans-
fer, and heat transfer respectively obey Newton's law, Fisk's
law, and Fourier's law in the turbulent boundary layer similar
to what happens in the laminar flow boundary layer. The
exchange coefficient in the entire boundary layer can be
expressed using the effective values, i.e.

e = wut (55)




L__{:t)%?) (8)

In the layer flow region HBat, Osat, and diw correspond ]
to the viscosity, Prandtl number, and Schmidt number of the
fluld, respectively. The effect viscosity inside the turbulent
flow region is defined by adopting the mixing length concept
of Prandtl which is:

91, (10)

Bty = pl? oy

and %« and oiwe are the effective turbulent flow Prandtl
number and the effect turbulent flow Schmidt number, respect-

ively.

Equations (2), (3), and (4) are of the conservation equa-
_ tion type. The left hand side of the equal sign is the convec-
3 tion term. The first term on the right is the diffusion term
B and the second term 1s the source. If the source term is known
or can be obtained through another expression, then the above

j ten equations can give solution to the ten unknowns o, T,4%, 4,9, :
. miy T, Jis Jas patte . During the solution seeking process the ‘

} values for 1, djat, Tuatt can be obtained from certain expres- é
[2]

sions or expeérimental data

In order to obtaln the solution more conveniently, let
us transform the above equations into the von Mlses coordinate
system (s~¢ coordinate system) and bring in the concept of the
flow function.

L S e

9 [ (11)
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(2),~(2), - (2) 02
(‘ag") ‘P"‘( ) (13)

Equations (2), (3), and (4) then become

O o B 1dp (21)
or "6 " aas
om, _ _9 ., & '
_a:. % (Jin) + (3")
oh* ) :
--a—x—-—g‘-i{(j‘ + lZH,j,'“'“r)f} (’4'>

Because equations (7), (8), and (9) can be transformed
into partial derivatives with respect to T, JJ, and Jh
respectively, therefore equations (2*'), (3'), and (4') become
the classical parabolic curve equation with a source. Hence-
forth, 1t is in principle possible to adopt numerical methods
which are sultable for parabolic equations to process the above
set of equations.

Before proceeding further in seeking for the solutions of
the above equations, we are going to carry out a discussion on
the above mentioned momentum equation.

In the derivation of momentum equation in the axi-
symmetrical coordinate system (see Appendix I), the first
obtained equation 1is

Ou Ou 0t  coad3 . _ 3 -4
Ll "I Ml M (I-4)

Only general boundary layer assumptions are made in the
deviation process. The applicable region of equation (I-4) is
relative’y wider. It can be applied not only to the boundary
Taver .ow of a revolving surface on the basis of the axi-
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symmetrical coordinates, but also to the jet boundary layer
flow on the basis of cylindrical coordinates.

As for the analysis of axi-symmetrical jet flow it is
generally better to use the cylindrical coordinate system. At
this time the thickness of the boundary layer and the radial
length belong to the same order of magnitude. Therefore, the
momentum equation of the boundary layer of a steady two-
dimensional axi-symmetrical jet flow can be derived

8u Ou 1 8 — 4 (14)
“ e T e T

where u and v are the velocity components along the x and r

directions, respectively.

Comparing equation (I-4) with equation (14) and also referr-
ing to Figure 1, we can see that when 9-—9 and , -0 the
orthogonal axi-symmetrical curve coordinate system 1s reduced
to a cylindrical coordinate system. Equation (I-4) becomes
equation (14). Earlier Mangler, in his treatment of the laminar
boundary layer problems, did not keep the second term on the
right hand side of equation (I-4) through order of magnitude
comparison. Mathematidally, it transformed the boundary layer
problem of a revolved body into a planar boundary layer problem
for processing in order to simplify the procedure necessary to
obtain the solution[5]. Presently, because of the use of numeri-
cal computations and through the establishment of computational
programming based on the equations stated above, we not only
can solve the boundary layer problem of a revolved body but also
can deal with the boundary layer problem of the axi-symmetrical
Jet flow and the boundary layer problem of the planar flow.

In order to raise the accuracy of calculation in the various
regions in the boundary layer, the choice of the difference net-
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work before the establishment of the difference equations is
very important. If we use the simple ¢ coordinate system tc
establish the network then in the region where x is small it is
not possible to clearly express the variation of the flow

field due to the small number of network nodal points. If for
this reason the coordinate lines for ¢ value becomes much more
dense in order to have more nodal polnts in the x direction in
the area where x 1s small, then there are large number of
unnecessary nodal points 1n the area where x 1is large.

In overcoming the above difficulty, some authors used the

x—ufuy Or g-—ylyy coordinate system. In this paper we used
the Patankar-Spalding coordinate system mentioned in Reference
[2] which is the x-w coordinate system. This type of method
which transforms the ordinate of the orthogonal coordinate sys-
tem into a relative value 1s to arrange so that the number of
network nodal point to be the same during every step as the
computation progresses in order to improve the accuracy of the
computation in the area where x is small. Based cn Reference [2]

PP S’ 18 ' (15)

wtde

x+8r

Figure 2. Diagram for Coordinate Transformation.
Key: 1. Constant.

Here the coordinate relationships between x.¢, and w are
shown in Figure 2. From this we get the follewing egua*ions

(@) =G+ @)l

—4d

d
—n 3 — )
e w o (e — &0

b5 — $u

(16)
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O\ a1 (2 .
8«#): ¢’;—¢,(8m>: (17
where o — ), % -l

n 1"
mI and mE represent the rate of mass transfer across the inner

and outer boundary, respectively.

Using equations (16) and (17) we can transform the set of

conservation equations (2'), (3'), and (4') into the following
general form:

o0 o0 _ 3 (, 80 8
-6:+(a+bw>8w aw(‘aw)-’-d (18)
where o = vy (P = &1

b = Crgmy — rimy )/ (e — ¢1)
c = ripupge/[(dbx — ¢Vl

The source term, however, has different content which
varies with the characteristic of the conservation equationl.

Characteristic Content
of the of
Equation Variables term d
momentum equation u ~Lde
pu dx
mass transfer m R,
equation J (pu)
é r? £t 1 2(“”2 2
1 # O Lot (] m ) s
energy equation h 8w{<¢£__¢0.( ,“u) A }

lThe source term of the energy equation 1s derived after

letting %i=a4




Equation 18 1s still a parabolic function and its numeri-
cal solution 1s obtained through the establishment of a differ-
ence equation described in the following section.

II. The Establishment and Solution of
the Difference Equation

Let us take a finite controlled volume in the flow field
as shown in Figure 3 and then carry out integration within
the 1imits of the defined finite control volume to establish
the difference equation. The use of this method to establish
the difference equation has apparent advantages over the use of
the Taylor series expansion method whether from the point of
view of satisfylng the physical concepts of the conservation
equations or for the prevention of serious mathematical errort3]'

Based on Appendix II, the difference equation is as
{ follows:

a®ot + 8100 + gPo~ + g = gs(Pp+ — Pp) — g(Py — ¢5-)

| 84 (19)
k 3 +do+ (5‘5)_(% —0)
1 After simplification
&=
(pp-d¢p++8¢p'+c (20) )
|
1
3 where 4 0 — g
. | &+ g+ g — (04/30),
; B m I (el 3}

C = d- - (ad/a‘p)n@u - £
6+ g+ g — (94/00),

For the conservation of momentum equatlion, due to the differ-

; ! 11
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ent contents from treatment of the source term (see Appendix

II), the difference equation corresponding to equation (20)
is:

up = A up+t + Buu- + C, (21)

where PR Ty ! +5,
“ g;+‘s+gs—53

Q—p+S

B, = ——————
Gtpta—35

Com — 18
atpteg—35

Based on the derivation in the Appendix it was found the
equation (19) is the six point unexplicit difference form which
has the characteristic of stability for any progressing steps.

The coefficients of the linear algebraic equations repre-
sented by equation (20) form a three diagonal linear maftrix and
solution can be found using an iterative method. For that
equation (20) 1s simplified further as:

O =40, + B (22)
where _
. 4 . BB+ C , ’
A, = BA" ‘ 1~ B.A 2 2 & % 2

Because-cbl and ®N+3 are determined by the boundary condi-
tions, when the ¢l and ¢N+3 values are not given on the
boundary, then thelr coefficients are zero. Here we thecreti-
cally solved the problem in seeking for a solution.

12
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Figure 3. Controlled Volume

When the nodal points are chosen to be more dense, then
the linear distribution of ¢ value assumption in Figure 3 (On
the ¢- w plane) has already met the accuracy requirement for
all the points in the flow field. But because the variation
of ¢ value 1s steeper near the boundary, if we still use the
linear variation of the true value on the boundary, distortion
will occur. Especially when the values of relativeflux and
transfer rate of a physical quantity on the boundary are to be
determined, it would cause a large error. Because when these
values are determined, it is necessary to use the gradlent of ¢
on the boundary and thils gradient can not be replaced by the
simply linear varlation between the true ¢4, value on the
boundary and the ¢3 value at its neighboring nodal point (refer
to Figure 4). Therefore, during the process of solving for the
the boundary layer problem, a sliding value problem on the
boundary was proposed. That is it is possible to obtain the
sliding value ¢2 (or °n+2) based on the distribution curve of ¢
on various boundaries. The actual methods can be cobtalned by
referring to Reference [2].

13




Because in the calculation of the sliding value we must
consider the distribution of u on the boundary, therefore the
shape of the distribution curve of u on the boundary would
directly influence the accuracy of the results of computation
of the boundary layer flow. Because the u value near the
boundary is very small, from the set of conservation equations
(2), (3), and (4) we can see that the convection along the x -
axils can be neglected. This transforms and simplifies the flow
near the boundary into the model of the Couette flow. Based on
the characteristics of the Couette flow on the boundary, we
can derive the value of u and the exponent of the distribution
curve of the value of 9.

/
0,/
LT )
oltith o, 7

2 wxae=(y |

|

') :

1 g K
- -y -y e Wy WNe| YNeL) Wae)

(o) (CTY)

Figure 4. Definition of Sliding Value.
Key: I boundary, 2. True variation of ¢ value, 3. True
variation of ¢ value, 4. E boundary.

Regarding the treatment of the source term %f : For
the flow with given 942 distribution, we can directly use
dx

fhe above method to solve the problem. But for those problems
with the distribution of fﬂ yet to be determined in the flow

X

process (such as the boundary layer flow problem in the restric-
ted duct), 1t 1s relatively more complicated. Rigorously
speaking, the value of the distribution of ;55 should be




resolved based on a iterative computation method. This requires

to save all the parameters relevant to 92 in the flow field
dx

and to carry out multiple iterations. This would significantly

increase the computation time and memory units required which
eliminates the advantages short time and few memory units
necessary for the original progressing method used to obtailn
1 the solution to the parabolic equation. For that an approxi-
mation method 1s used.

The expression for ~§f can be derived based on the

3 continuity equation and momentum equation of the one-dimensional

flow as follows:

dp o _F _ 2 dh 'ii(iié+_1_4£
A A A\d & pax) (23)
] therefore

dp o dp 4T

» T
{ Pt dd_wE 4T
; dp o —A T A T A I T AT Ik (24)
‘ ds ]

A3
where

% - S rpu’dy/s roudy, T = 5 rouTdy /S roudy

g e

For gas flow of low Mach number, the effect of pressure
on density can be neglected. Thus the second term of the
denominator on the right side of the equal sign no longer exists.

- wicrilivaace. DY

. i
As for the physical meaning of o s , 1t can be looked
i at as a discussion of a compressor flow problem. When the

I SR} O ieby . ST T ey o

computation progressed to ., , it was found that the
results were that the fluid did not fill the entlre cross-section

of the compressor. This indicated that the original given 52
X

o 2 .

i
5
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4 value was incorrect. We should have started with a new assump-
1 tion of if to obtain the cross-section of the fluild until 1t
finally matched the cross-section of the compressor. At the
present moment this method 1s not used. Instead the computation
proceeds to X = xp . But the '44 value which has an effect

dx
on the ;!L value 1s calculated using the following equation
. dx
A4 o (Aep =4y ) (25)
dx Ip =™ Xy

3 This is to say that the difference in the ;“f value at the

previous stop («=1s,) 1is partially compensated in the effect
of area variation at the next stop (x=1xp) . In the actual
calculation, a partial value of equation (25) should be used.
Only by doing so that the instability of the calculated Al can
be prevented.

.,
-— naad e

In using the above method, it should be noticed that Af,D
and Ad,D must be very close at all times. They should be the
same at some boundary points. Otherwise the approximation of
the calculated flow fileld has no meaning whatsoever. (See

Figure 5).

e

Figure 5. The physical meaning of dA/dx

b e T T e e

'j As for the amount of partial value of equation (25) that

® should be used, it depends on the closeness of Af,D and Ad,D

3' which 1s checked during the computation process. For an approxi-
mate straight tube flow, we can use 0.1 - 0.2 as the correcticn

e ST 28—
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coefficient.

I1I.

For compressors which compress quickly, the
correction coefficient 1is very small or is given by sections.

The Contents of the Computation Program and

Computed Example

Computation program has been complled based on the abave

discussion.

Due to the limitation in pages, the block diagram

and the actual content of the relevant program are omitted. The

computer used to process the program was a PFelix C-256 computer.

We have used thils program to calculate a ring shaped com-
pressor (Figure 6). With regard to t

he axial static pressure

variation, the calculated and experimental values were compared
and shown in the figure. The results

224221 L 4L L L L lddbbddodden

are pretty close.

re ik h
q —— 3
1.020 ’ .: Y
=1 2 177777777777777777.
1015 pr g B ‘
2 ‘ﬁ"\ /_(/
l -& LG ,/A/ _L_
a, ,; —
1.008 =5 —
il
L=z 04 06 03 10 a4
LiLex 2 ul L]
" ms # m%x # 8
—"%gﬂ ——wu& () rESRUANERE 7 () RErEBAEEE g
Figure 6. Computer Example. Key: 1. P/P inlet, 2. L/L

total length, 3.

direction of flow, U4,

mental value, 6. calculated value, 7.
variation of the compressor, 9. (b) ge
ring shaped compressor.
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symmetry axls, 5. experi-
(a) axlal static pressure
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IV, Closing Remarks

This paper based on the momentum equation expressed by
stress tensor published in Reference [6] to derive the momen-
tum equation of non-rotational steady axi-symmetric flow of a
compressible fluid in the turbulent boundary layer in the axi-
symmetrical coordinate system. It can be found very clearly
from the derivztion and discussion that equation (2') (similarly
equations (3'), (4') and (18)) is not only suitable in solving
the boundary .syer problem on the surface of a revolved body
but also appll-d4%le to the boundary layer problem of an axi-
symmetric let flow.

On the basis of Reference [2], the computer program after
being partlally modified by us can be applied to the following
two situations from actual computational verification.

1. When the entlre flow in the duct 1is treated by taking
the viscosity into consideration, if the curvatore of the wall
surface of the duct is not too large and the rate of curvature
change 1n the direction of the flow 1is also not too large, then
the entire flow fleld can be calculated based on this method.

2. If the curvature change of the duct 1is large then it
i1s necessary to combine thlis method and the non-viscous flow
in the main flow method to compute the solution.

Appendix I

The Deviation of the Continuity Equation and the Momentun
Equation

When the compressible viscous fluld flows steadlly 1n
space, its continuity equation and momentum equation (without
external force) are as follows:

18




v (aV)m=0 (I-1)

w(FIVI)-VX (vXxV)=g v x (1-2)

Based on the vector and tensor operations introduced 1in
Reference [6], for the non-rotational axi-symmetric flow in the
axl-symmetrical coordinate system (Figure 1) considering that
x¢ and a'(%"‘—) are very small, then =1, b1, and he=r
The coordinates corresponding tO 4,8,r are 56 . The com-
ponents correspond to the vector quantity V are n=u nn=v, and

v=0 . In addition, all the variations in the 6 direction
for all the variables can be neglected[u].

Therefore, the continuity equation can be written as the
following:

,,<m>+ > (ore) =0 (1)

The equation of the x-direction momentum component is

-. [ 9 3 ind
PR 6‘ +p¢T“ dx .—1;; + Xun m: + %y = - ﬂug—

The relation between the stress tension 7 and the viscous

stress tensor T is as follows:

Sy = xy + Syp

where 51; 1s the Kronecker §, we get

o Lo 1 v, LTy %500 Ty cd  zer und
'y " "vatoa to » *t% T % Ty

Based on the gssumption made by Prandtl cn the boundary

layer, the above equation can be simplified into

pua—-q.p'o—“--i'il. Mt.'-ﬁ

dy r ax (1-3)

19




After considering the effect of curvature, we can obtain

the momentum component equation in the y equation as
Therefore

Since the boundary layer belongs to the :o¢s) class, the
static pressure difference in the y direction in the actual
boundary layer can be ignored.

Based on the conditions of the non-rotational axi-
symmetrical flow and from an order of magnitude comparison,
we know that the momentum component equation in the 8 direction
no longer exists.

For simplification, let t represent Txy and also consider

m@-;,’;— and .%:’_-%- (because the static pressure difference

in the y direction can be ignored). Equation (I-3) can then
be transformed into the following:

o u  Or cos 9 dp
pu'a';"-i-ppwa-a-b—'-t—z (I-4)

or

.

d,
o Fr ot G- E (2)

As for the mass transfer equation (3) and energy equation
(4), they can be derived using the same procedures as described
above. It will not be repeated here,

20
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Appendix II. The Principles Used in the
Derivation of the Difference Equation

When establishing the difference equation, the relation
between ¢-« and e-r used were linear and stalr-case shaped
distributioﬁs, respectively. As for the ¢ value used in 5%
the ¢ value at the downstream Xp was used. This could insure
the stabllity of the difference computation[zj. But the coeffi-
cient a, b, and ¢ were obtalned from the ¢ value at xu upstream.
The difference format of the equatlion was then established based
on the integration with respect to the entire control volume for

all the terms in equation (18).

The source term 4 has different content corresponding to
different conservatlion equations. For mass transfer and energy
conservation equations, we assumed that in the entire control
volume the value of d was uniform and equal to the value dD
(i.e. d-w or d-x varies as a stalr case shaped variation).

For the momentum conservation equation, the corresponding
value of ¢ is u. The calculated result of u would simultaneously
influence the solutions to the mass transfer and the energy con-
servation equations. Therefore the importance of the more
accurate assumption of the source term distribution in the momen-
tum conservation equation becomes more apparent. Let us assume
that the varlation of d-w between network nodal points was linear
and the variation of d-x between the network nodal roints was a
staircase shaped varlation.

Based on the above principles, we can derive the difference
equation of the mass transfer or energy conservation equation

6Pp¢t + @0 + 1100 + go = 11 (Dot = Op) = 2, (Pp = Pp-) + du + (%g‘). (®p - 0. (19)
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Similarly, the difference equation of the ccrresponding
momentum conservation equation can be derived

fi4p* + giup + gwp- + Gy = gs(upt = %p) = £up — #0-) + Swot + Swo + Swo- + Se

where Bus £20 @1, Bos Ens 8o were defined as above, and

5 = e (). G =)
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* T doul \dx/s
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Abstract

A momentum equation of steady two-dimensional axi-symmetrical turbulent bound-
ary layer is derived employing stress tensor analysis. It is found that if the flow in
a duct is to be treated as viscous everywhere, the equation is valid only if the curvature
of the duct and the rate of change of the curvature of the duct in the flow direction
are small. These requirements so far have not been verified by previous authors.

In this paper, a computer program for solving the governing equations has been
completed and a numerical example i selected to show its degree of accuracy.
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LAMINAR HEAT TRANSFER WITH MASS
INJECTION AND CHEMICAL REACTION

Zu Tie-1lint

In order to simplify the boundary layer
problem with mass injection and chemical reaction,
a general stolchiometric formula has been derived.
Using the chemical equilibrium as an example we
performed an analysis. The calculated results were
found to be consistent with the experimental ones.
When the amount of injection is zero, the relevant
data were in good agreement with the results listed
in Reference [4]. Finally, it was pointed out that
with the increasing available energy of the exo-
thermic reaction the effect of Lewis number Le on
the heat transfer decreases.

In the boundary layer problem with mass injection and

chemical reaction, one usually assumes that the Lew!J number

Le = 1 in the combustion loss calculation in order ~5 obtain
relatively simple results. Along wlth increasing amount of
injection and variation of other relevant conditions, this
assumption would cause significant errors in the results of
calculated heat transfer and effective combustion heat. Leestl]
has provided an analytical solutlon for Le # 1 which is expressed
by Blasius function to the wall surface chemical equilibrium
problem of a frozen boundary layer with a constant transfer
characteristic. Thls paper studied the affect of chemical
reaction on the heat transfer through a dlscussion of a chemical
equilibrium boundary layer with Le ¥ 1. We have carried out a

This paper was received on December 9, 1977.

1 This paper was written in 1964 during the period when the
author was working at Institute of Mechanics of Chinese
Science Academy. It was presented in the Combustlion Techno-
logy Meeting at Dalreu in 1964. The author's present place of
employment: Central Weather Bureau, Institute of meterology
research, atmospheric weather research department.
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discussion on the equations of boundary layer chemical reaction

and wall surface conditions and obtalned an universal generalil-
zed stolchiometric formula. Using the assumption imposed by
Lees, we provided the numerical solution to a series of examples
for the equilibrium boundary layer. After further making a
linearity assumption, we obtained an approximate equilibrium
solution similar to Lees' frozen solution.

In the constant transfer assumption, the most worthwhile
discussing subject is the applicabllity of using Fisk's Law to
express the mass flow and taking Le as a constant. The author
has written an article on thils subject with Yao Kang-Chun and
Hu Cheng-Hwa in 1964 (unpublished). That paper compared the
heat ftransfer calculated in the decomposition of air using the
multiple element method and the two-element method with a con-
stant Le number. Its concluslion was that when the constant Le
number was properly chose. we could obtain the same heat trans-
fer as the one calculated by the multiple element method.
(Figure 1). As for the combustion reactions in decomposed air,
as long as a proper Le number is chosen, we will get the same
result.

I. Basic Equations and Generalized
Stoichiometric Formula

The continuity, diffusion, momentum and energy (expressed by
the frozen enthalpy HT)equations of a steady laminar boundary
layer with chemical reaction are:

Cour®)y + Cove®), = 0 (1)
puK,y + pvK,y = —1],, +"’4~(","‘Al: 2_:"'.‘) (2)
puu, + pvu, = —{’! + (l“‘y);‘ B

(3)
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1 Figure 1. Heat Transfer Calculated Using the Multiple
| Element Method and Two-Element Method. Key: 2. Multiple
element method, 3. Two-element method. ——FAR ~—Z@x
2 3 |
Where r 1s the radius of the revoluted body; when € = 0
it is a two dimensional flow; When € = 1, it is a three
dimensional axl-symmetrical flow; p 1S tne density of the mass; |
.1 u and v are respectively the velocity components in the x and
. y dlrection; x and y are respectively coordinates along the
direction of the object and that perpendicular to the surface
of the object; the subscript 1 represents any element in the
complete element 1; K is the concentration (mass ratio); J is .
the mass flow; w 1s the chemical rate of formation; P 1s the
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pressure; u is the viscosity; the frozen enthalpy H%'*i";'
! T

b= Kk, h,-j ¢,dT; ¢, 1S the isobaric specific heat of element
= ’

[]
1; the isobaric specific heat of the gas mixture ;= X Ky ;
{el

K is the thermal conductivity; the Praneltl number Pr = Eat 5

& |
hg 1s the enthalpy of formation at 0°K for a unit mass of
element 1.

Let us assume that every element 1s a perfect gas, then

PiM, = pRT (5)
PM = pRT (6)

— -t
When N = (ZK. -fl—) » and M, is the molecular weight of the ele-
¢ 4

ment 1; R Is the conventional gas constant. Let us assume that
the mass flow can be expressed using Fisk's Law, which treats
the diffusion coefflcients DiJ of the two elements the same
(both to be D) and only considers concentration diffusion, then

Ji - "PDKa, (7)

When wy is frozen at zero and it is a functicn of the local

p, T, and Ki when there 1s chemical reaction. The functional
relation 1s glven by the chemical kinetic conditions. Let us
assume that there are a total number of s independent chemical
reactions in the problem we are considering:

'Zn,'x,-O(y-l,Z,'”.l) (8)

{oy

where ng is the stiochiometric coefficient of element i in the

pth chemical reaction; X, 1s the molecular formula of element

i
1. Every reactiocn in equation (8) has only one independent

reaction rate. s is usually smaller than 1. In order to solve
for the mass ratlo of the entire 1 elements, the 1 - s diffusion

s
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equations necessary to be preserved are usually transformed
into the frozen form using the conservation of element method.
This method 1s mandatory for equilibrium problems. For non-
equilibrium problems, the calculatlion procedure can be simpli-
fied and it 1s irrelevant whether the mass flow is expressed
using equation (7). In order to overcome the disadvantages of
using the conservation of element method such as the inconven-
lence to put 1t into a routine form and inability to choose
the reference element, this paper obtained a "generalized
stolchiometric formula."

Let us make the reaction rates of 1 - s elements out of
the 1 elements in the 1 - s reactions !, w},---,w: to be indep-
endent, then the rate of formation of each element can directly
be expressed oy the linear combination of the s independent rates
of formation:

w3 a1, 2,000, (9)
'-'.’
where
l-.SEﬂ!Jl (10)
RERNTIVH)

If we consider the problem as a linear space problem, then this
set of independent rates of formation can be mathematically
treated as a set of lndependent vectors of a "basis". The
coefficient ai then becomes the coordinate under this "basis".
The m? appearing in equation (9) is not convenlent to use, it
is necessary to select a new "basis" (o, 03,0+, 8,), which is
expressed by the total reactlon rate. The reaction rate not
included in the new "basis" or the non-independent reaction
rate can be expressed linearly using the new "basis":

g D Xy (h=st+1,042,.00,0) (11)

jopm]
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where

o M a0y

f ( {)‘ ('”.d)ﬂ(ax)

2 L P B H

- » x \ofe oo o (12)
Equation (11) is the generalized stoichiometric formula. The

use of this formula 1s especially convenient for problems
with complicated chemical reactions. Let us define the symbol:

-.o, )

_— &8 _8(p 8
-4 ‘“ax"'”Qy py(Dpay) (13)

and then equation (2) can be written as:

ZLKi= o (18)

F; Substituting equation (14) in equation (1l1), we get

" LRy =0 (15)

Ri=K— DMK (homs 41,4, (16)
1=
Equation (15) is the preserved (1 - s) diffusion equations in
the frozen form. The remaining s equatlons are provided by
A the s chemical reaction conditions. When the chemical reactions
are in equilibrium, the s conditions are

S~ oy
Mor. SRR

11 () em Bt o, an

(L] []

o where or,1s the balancing constant of the p°" reaction. If

we slizntly change the operating symbol & by substituting wy
with the rate of formation per unit area My s then equation (15)
can be expanded to the boundary or any plane.
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II. Approximate Solution and Iteration
Equations

Let us consider pr, Le( = pDé,/k), | ( = pufpp.) to be reference
constants. For practical reasons, let us limit our discussion
to the point of the revoluted body. The following type of

correction was made using the Mangler-Dorodonitsyn transforma-
tion:

,,__M-.ﬁp S

(18)

i~ 5 m#aurd#
where the subscripts e and w represent the wall surface and
outer fringe of the boundary layer values, respectively. Let
us define the following dimensionless quantities:

T _ /(T .
h=1%, er-g:—j. c,ar/j. édT,

For cold walls, we can neglect the pressure gradient term
in the momentum equation.[3] Let us assume that the Cpi for every
element is the same and use equation (11) in the energy equa-
tion, then the baslic equations can be written as

fose + fyy = 0 - (19)
Riyy + ScfRiy = 0 @emstl,ad 30D (20)

(h' + Le 2 "{nK') + Prf (lr + Le 2 5¢hK')

I-t l-l

_ (21)
- Prf(Le — 1) ZL.K,. _‘

where Sc = Pe/Le, Ky = bia/Hry Moo 8]+ z,zm. The boundary
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conditions for these equations are:

1,€0) =0, J(0) m f, = -—(»)./(r 'r*e.m
fy(®) =2 o
Ri0) = vy Ri(e0) = 2._ o (22)
lr(o) - fTws ‘1(”) -] o ‘
As for the s equatlons lacking in finding solutions to Ki,

equation (17) will be used as the supplement for equilibrium
problems.

We carried out integration for equations (20) and (21) and

wrote the result of integration of equation (21) in an iterative
form. We get

RQ et Eg. - (Eu - Rg-)’(’l"dns‘) (23)
ktw - ('h’.. - RQ.)’Q(O;’.,&) (24)

(g1 + Leh o) — (gr + Lekade = {21, — g70 + [Le = (Le — 1) G*(0)] (25)
* Bow — 5an)}B(s fo, Pr) + G'Y()
(gs + Lek )2 = {gr, — g1 + [Le = (Le = 1)G*(0) J(Aeae — )} (26)
¢ ﬂ.(O: fus Pr)

where 8 1s the Blasius function:

z = Sc or Pr. The detailed numerical table of B and Bn is
given in Reference [2].

Ieb - Z Ith‘

i=1

Gln) = Cheas = Feaad™ 3 Ko = KinYGi()

(L]}

G = (Kjy = Kipd™Pe =110 ([ temsraeg sann




Under the situatioq that the boundary conditions are known,
equation (26) can provide the heat transfer which we are
interested in obtaining. The G(«) in the equation usually
has to be obtalned through the 1lteration equation set (23) -
(29) and equation (17). The first order approximation of G(w)
can be calculated using the Ky  when Le = 1. Calculation makes
clear that convegence 1in this form of equation 1is very guick.
When the temperature in the boundary layer exceeds 2000°K,
because the vibrational degrees of freedom for every element
are nearly all excited, 55 can be treated approximately as a
constant. At this time in equations (25) and (26) g, =68=T/T, .
It is even simpler to find the solution.

III. Wall Surface Mass Ratlo
and Heat Transfer

By integrating equation (20) from n = 0 to 7=0+ oCe
is a small quantity) and also noticing equation (24), we can
obtain the conservation of mass conditions of wall surface

Riw = (Ryo-B + R)/(B +1) (30)
where R, 1s defined by equation (16); K 4 - represents the
mass ratio before injection (i = K or j), for non-injection

elements Kiw- = 0; and Kiw represents the mass ratio after the
injection and chemical reaction.

- e —i‘j'___
s [84€0; ¢, 1)) (31)

Using wall temperature as a parameter, equation (30) and
equation (17) (or general catalytic conditions) form a set of
closed equations within which Kiw can be solved.

With different mass injection conditions, we can
divide the wall surface onto three types of problems and they

3
%
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are the "homogeneous reaction", the "heterogeneous reaction",
A and the combination of the two above. For "heterogeneous
reaction” (such as the combustion of carbon), the quantity B
of interest in the combustion loss calculation can be directly
solved using the above method. This is because the Kiw of the
solid phase element is always 1 in equation (17) and it is O
in equation (30). For "homogeneous reaction", the mass ratio
before injection should be given by the condition in the wall
(material composition, control method, etc.).

Using the approximation method to integrate the energy
equation (21) near the wall surface, we can get the heat trans-
fer into the wall as

Qo ™ k%}-_-ﬂ,(o;t., Pt P
du
‘ X . P-:f‘v ('d';')' (H'h - HT- (32 )
+ Lo'Ah gy — BLerLy)
where
Ak, = K, — [(B + 1)K, — BK.-]1}A!
" ,ZE Ky ! et (33)
Ler = 1 + (Le — 1D[(1 = G()) + Hy(G() = G,())] (34)
The latent heat of phase change 1is LE = HTw - HTW—‘ The sub-

script f represents the frozen value. When frozen, G(™) = G,(x),
Lo e, v, 8 1 = G() . Yp was given in Reference [11.
The subscript s represents the stationary point value.

If we neglect the differences of parameters such as Pr, Le,
1, etc. between the equilibrium and frozen conditions, from
equation (32) we can see that the exponent vy is the only para-
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igure 2. Comparison of Theoretical and Experimental Results
Key: 2. Experimental points (arranged based on Le = 1[5]),
3. Experimental points (arranged based on Le - 1.4), 4. Theo-
retical curve (Le = 1), 5. Theoretical curve derived in this
work (Le = 1.4), 6. Heat transfer of carbon combustion in
decomposed air, 7. Heat transfer of decomposed air under same
boundary conditions.

meter to indicate the effect of chemical kinetic condition in
the boundary layer on the heat transfer. Similar to the kinetic
energy recovery factor which depends on the Pr number, Le' here
corresponds to the extent of the transformation of the excess
chemical enthalpy of the outer fringe compared to the wall sur- !
face into thermal enthalpy. . Because the generalized stiochio- v
metric formula used can arbitrarily choose the reference ele-
ment, 1t 1s very convenient to select the element with concen-
tration at the wall surface to be zero (not zero in the outer
fringe) as the reference element in the calculation of equations
(32) - (35).
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Figure 3. The distributions of the dimensionless temperature
6 and the nitrogen and oxygen atomic mass ratios along n in
the equilibrium boundary layer of decomposed air.

Key: 2. wall surface reaction equilibrium, 3. this work,

b. this work.
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Key: 2. wall surface reaction, 3. equilibrium: the reaction in
the boundary layer is CO + Q = C02 (assuming nitrogen does not

recombine), 4. equilibrium distribution, 5. frozen distribution.
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This paper conducted heat transfer calculations for the
following examples. 1) The homogeneous injection of air, the
reagction equation is O,==20, N,=»2N ; 2) the homogenecus
injection of oxygen, which is the injection of oxygen in an
scattered flow of oxygen, the reaction equation is O,==20 ;

3) the homogeneous injection of nitrogen, the reaction equation
is N,«=2N ; 4) the injection of carbon monoxide, the
reaction equation is CO + Ow==CO, 5 5) the injection of carbon
monoxide, the reaction equations are co+ Ow=CO,, 20e=>0, 5

6) the injection of carbon monoxide, the reaction equétions are
== C0,, 20===0,, 2N===N, The results of example 1 at zero
injection agreed wlth the results of Reference [4] very well.
In Reference [5], they have found that the theoretical results
obtained by taking Le = 1 was far different from the results
they obtained from their carbon combustion experiment. If the
original data in Reference [5] were rearranged using the method
described in this paper and let Le = 1.4, then it was found
that all the experimental points were located either above or
below the theoretical values obtained using this methcd (see
Figure 2). Figures 3 - 6 provided the distributions of

K., T, —2‘—"1-52./2(!1‘). along n. Figures 7 -~ 8 showed the varia-
i1 P dx /e
tions of fw’ , and Tw with vy. The two extrema 1n the distri-

T
e
bution of —29155-/2(%‘) along n correspond to the maximum
F X} P X

exothermic and endothermic surfaces.
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IV. The Approximate Solution and Discussion

When Le 1s not too far away from 1, we can expand K1 and
gp around (Le - 1) and obtain:

K, = K@ + (Le = 1)KI" + O[(Le — 1)?] (36)
gr =g + (Le ~ 1)¢f + O[(Le — 1))
(37)

Let us neglect all the small terms after the second order term
of (Le - 1), then G(») can be solved from the energy equation
with Le = 1. From equation (21) it was found that the assump-

tions that all C , are identical and that %L-l (or %?““ )
r

and Le - 1 are small quantitles of the same order of magnitude
are equivalent. The concentration of the selected reference
element at the wall surface is zero. When >8>0 and m<a<m
(m>m>m 1s the value of n at 8 = 0.99), k,—0 and KJ is
monoclinic in the region p<g<wy . At this time, H, =0, Le

has the same expression as ln the frozen state:

Ler=1 4+ (Le—1)(1—G)

or
re~1l—G

Let us rewrite an into K, =K,Sa,. . Where S;=K,/K,,, 8 = (0 —6,)/(6,—6,),
and 61 and 62 are the dimensionless temperatures corresponding

to ny and Nos respectively. Let us assume that Ss=1 . This
assumption 1s sultable for the air decomposition problem when

the pressure is not too high. For other combustlion reactions,

it corresponds to an assumption that reaction only takes place at

nqy and Na (corresponding to the maximum exothermic and endo-

thermic surfaces in Figure 6). Assuming Pr = 1 and using the
subscripts 1 and 2 to respectively represent the values at ny

and Ny, we obtain the following by integrating GJ between the

37
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regions ny to UPE

- (’qq). 1 _
4 Gf [ln (,“). + T ¢ ﬁ)]/(ﬁia ~8i) (38)

. Based on the reaction initlation and termination conditions
E: of the reference element at ny and Ny, the n value is determined
“‘ using the method of determination of the boundary layer thick-
ness. Furthermore, through Le = 1 and using the energy equation
with constant Eb as well as equation (17), le and BJ2 can be
solved. From here we can locate the corresponding fnn and f
from the Blaslus table. The calculation indicates that the
error 1s less than 5% comparing the y value obtained using the

approximation method used in this section with the calculated

-

] results obtained in the last section.

- When fx—0,8,—~1 , G;—G; (GJ is consistent with the
results in Reference [1]). When g,—71, and 8« = 1 also,

G;—+1, and /=0 . This corresponds to the overlapping of
two reaction surfaces at the outer fringe. Similar to the
turbulent layer, a concentration type of discontinuity appears

1 at the outer fringe. The transfer process has no effect on the
1: heat transfer. 1In reality, situation can only exlist close to

Wi that condition. For example, when Te = 6000 K (cold wall condi-
tion) the ny of nitrogen is very close to the outer fringe. It
is meaningful to have identical results when Gl = 1 and Le = 1.
i If we define the extent of exothermic reaction occurring in a
relatively high temperature region as the reactivity, then the
assumption that Le = 1 1s only suitable for problems with strong
reactivity. When #—0 and #, -0 also, we can get G;={./8,(0it.) -
< Thls corresponds to the situation that the concentration inter-
' ruption surface is right on the wall surface. When the injec-

tion quantity 1s constant, the y value 1s maximum at this time
which also means that at this time the effect of the transfer
process has the most effect on the heat transfer. When the

4 0
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pressure is lower and the temperature of the outer fringe 1s
higher, the oxygen decomposition reaction is approximately in
this situation. Corresponding to the -fw value of 0.25, 0.50,
0.75 and 1.00, the value of Gi=f./8,(0;t.) are 0, -0.51, -1.52,
-4.0, and -14.1, respectively; and the corresponding Yy are

1.53, 1.84, 2.34, 3.33, and 6.55 times the frozen value Yyps
respectively. This explains that when there 1s chemical reaction
going on, vy may also be greater than Yoo

When o0<—f,<0.5 using le and 632 as variables we can

linearly expand GJ around the two points le = 0 and BJZ =1
to get
G =G + [Gr t’w] B+ (1 —G(Bi—1) (39)

In the above equatlon, because Gf 1s less than 1 and also less
than [f | and f; is always negative in injection problems, the
coefficients of le and sz are always positive. Therefore, GJ
increases with increasing le and sz and Yj decreases with
increasing BJl and BJ2' This explains that: when the reacti-
vity 1s stronger or the reactlion surface 1s closer to the
higher temperature outer fringe, the effect of the transfer pro-
cess on the heat transfer is weaker. All the factors which can
increase the reactivity such as reactlons with high equilibrium
constants, increasing the injection quantity of the reactant,
decreasing temperature for a fixed reaction, increasing the
pressure, etc. can make YJ smaller (refer to Figures 7 - 8).

For problems containing two or more reactions, we should
still calculate the contributlion to the total e -thalpy change
from the enthalpy difference (K,—K.)i, for each reaction
based on equation (28). The higher the enthalpy difference the
more 1ts recovery capabillty contributes to the total recovery
capabllity LeY. Since the mass ratio and enthalpy of formation

%
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of nitrogen far exceeds those of oxygen in alr, the y of
decomposed air with chemical reaction is usually smaller than

Ye when the outer fringe temperature 1s sufficiently high.

With increasing outer fringe temperature, other reactions

taking place in the decomposed air would further promote the
deviation of y in the less than Ye direction. The combustlon
reactions 1n decomposed air are merely reactions between the
combustible material with the relevant elements in air. The
trend of variation of y i1s similar to tnat of the above discussed
pure decomposed alr problem.

V. Conclusions

(11)

Using the generalized stoichiometric formufzrf;)eliminate
the non-independent reaction rates has the convenience of
arbitrary selection of a reference element. This method is
more routine than any other methods. Therefore, it 1s more
suitable for problems with complicated chemical reactions.

The heat transfer can be calculated using the set of given
iteration equations. Calculation and analysis both indicate
that: the increase in reactivity 1s the movement of the reaction
to the outer fringe and it has the effect of decreasing the ‘
influence of Le number on the heat transfer. For decomposition
of ailr and combustion reactions in decomposed air, the effect of
Le number on the heat transfer 1s less than that at the frozen
state.

In the study of non-equilibrium problems located between
the equilibrium and frozen states, the difficulty 1s not in
solving the boundary layer equation itself. Rather, it 1is
difficult to provide the accurate reaction rates. When the
amount of injection is not too large and near the stationary
point, the difference between the equilibrium and the frozen
states 1s not too significant. Therefore, under such condition

=




the non-equilibrium condition does not have to be considered.
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Aﬁs(ract

To simplify our problem, a stoichiometric formula is derived for boundary layers
with mass injection and chemical reaction. As an example, the solution of chemical
cquilibrium was analized. Results of calculation were found to be in close agreement
with that of experiment [5], and with that-of [4] when there is no injection. Finally,
it was indicated that the effect of Lewis number on heat trunpsfer decreases as the
capability of heat generating reactions mcreasel
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THE MEASUREMENTS OF THE STATIC AND DYNAMIC STABILITY DERIVATIVES
OF CONICAL MODELS IN THE SHOCK TUNNEL

Ma Jia-huan, Tang Zhong-heng, Zhang Xlao-ping and Guo Yan-ping
(Mechanics Research Institute, Academy Sinica)

Experimental research of shock tunnel for the development of
hypersonic gasdynamics has been conducted widely. Due to its
extremely short duratlon, there exist certain difficulties in the
measuring technique. Hence, it 1s limited to the static aspect
when the stability of a flying vehicle is studied. 1In fact, the
oscillatory motlon ¢f the flying vehicle after reentry directly
affects the aerodynamic load and the aerodynamic heating. Hence,
the study of dynamic stability is a very essential issue. For the
experimental investigation of the dynamic stability, the model free
flight method which avoids completely the disturbance of the sting
displays its unique superiority. Trial efforts were made in this
field but have not been successful due to the short duration of
the shock tunnel [1]. To extend the range of application of the
shock tunnel on the one hand, and to initiate the experimental
study of the hypersonic dynamic stability on the other, we spent
some effort on modeling and angular measurement and obtalned 1.5~
2.0 cycles of pitching angle motion ec = 10° and 11° cones in a
bypersonic flow of M_ = 9.0 with the model free flight method.
Through data processing technique, not only their static stability
derlivatives are obtained, but alsc the preliminary result of the
dynamic stabllity.

1. Experimental facility, measuring technique and model

The experiment is conducted in a JF=-8 reflection type shock
tunnel. The air flow 1In such a tube 1s motivated by the mixing
and combusting of hydrogen and oxygen. The internal diameter of
the shock tunnel 1s 150 mm and the dlameter of the test section 1is
1.2 m. The typical operating condition for the experiment is:

Recelved 4 May 1979.
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M, = 9.0, Re_ = 1.6 x 106, and a quasi-steady operating duration
of about 10 millisecond.

The first step of the free flight method for force measure-
ment is to hang the model in the test section of the tunnel with
extremely thin nylon wires at prescribed initial conditions. As
soon as the initiating shock scans through the test section, the
nylon wires are burnt out and the model is left exposed to the
aerodynamic force and the gravity only, without any other support.
The free flight motion 1s then satisfied. The motion of the model
at this instant can be recorded by means of synchronized high speed
photography. By analyzing the data and the motion of the model,
the aerodynamic characteristics can be determined. The "Strobokin"

high speed flasher with flashing frequency of £ = 5 ke/s 1s used.
Each single flashing pulse 1is about 1 sec. The motion history of
the model 1is recorded by the revoling drum camera. The duration
time of the flash is controlled by a timer and 1s corresponding

to the quasi-steady operation time after the tunnel is started.

In order to identify the flow state corresponding to each film,

the measured signal of the pitot pressure in the test section of
the wind tunnel and flashing signal must be recorded simultaneously
on the oscilloscope (see Figure 1). The complete set up of the
testing system is shown in Figure 2.

A model of very small moment of inertia of rotation is one of 1
the basic requirements to obtain relative more periods of angular
motion in the shock tunnel and hence to obtain the dynamic deriva-
tive. During the quasi-steady operating time t of the wind tunnel,

L WP

the period of oscillation of the model 1is ;
—_— M
N'—L ~Cug2q9°5-4 (1)
2= 4
and within the same duration, the flight distance of the model due 'y
to drag 1is g
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2m (2)

f By direct substitution, it can be observed that

.

N-lJ——c-'o';'-.-‘- (3)
E g CM ? b 4

Farwn] (oma g

Figure 1. Pltot pressure Figure 2. Schematic diagram

and flashing signals of testing system

upper line: flashing impulse l-waiting-type drum camera; 2-photoelectric
signal diode; 3- preamplifier; lU-preamplifier;

lower line: pitot pressure 5- two-channels oscilloscope; 6- pitot head;
signal T- transducer; 8- trigger delayer; 9- pre-

scanning speed: 2 ms/cm setting circuit; 10- digital freq. meter;

11l-flash light; 12- source box; 13- controller;
14~ timer; 15- electric source;

In the above equations,

t quasi-steady operation time duration

o] dynamic pressure of the flow

d characteristic dimension of the model, that iIs, the
base diameter 2

S the base area of the model, S = EEQ_
the mass of the model ,m-!:

. I the rotational moment of inertia of the model about

the lateral axls through the center of gravity

cmu the static stablility derivative of the model

CDeffthe effective drag coefficlient of the model under the

test condition

TSN R " "y " o o
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The model should be designed such that r does not overshoot
the range of the camera lens while maintaining the maximum poss-
ible periods of angular motion. From Equation (3}, it is ob-
served that for a certain aerodynamic profile under a specified
flow condition, the model must acquire a sufficlient amount of
mass with a minimal rotational moment of inertia. Hence, the
structure of the model 1s generally composed of a heavy core with
a light outer shell. The outer shell is made of very light poly-
mer material and lead beads are used as core to regulate the posi-
tion of the center of gravity of the model. The rotational moment
of inertia obtained 1is (1-2)x1073 gm-cm-secz. The geometrical
dimension and the physical parameters of the model must be mea-
sured accurately before conducting the experiment. Typlcal dimen-
sions of the conical models used in this experiment is listed in
the following table (Table 1):

TABLE 1. Typical geometrical dimensions and physical parameters
of the conical models

Model Geometrical Dimensions ’ Physical Parameters
type model codejsemi- Jlength | base r WE Rela- [Rotational
vertex L cm diameter ‘ltlve moment of
angle D cm W gmjctr. |nertia
ec deg of T gm-cm-sec
grav-
ity
xcg/L

conical| 10 - 7 [9°57' |5.67 2.01 h.726 | 0.39{1.52x10"3
conical| 11 - 4 |10°57'|5.14 1.97 h.s94 | 0.41 |{1.11x1073

2. 3Jathering and analyzing the data

To improve the precislon in the detectlon cf the angular
positicn of the model, the coordinated reading method 1s employed.
12 points are detected on the profile of the model image in the
HCZ-1 three-dimensional detector and the probability errcr of the
orientation angle 1s about * 0.05°.
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For the plane free flight motion of axi-symmetrical model
without rotation, the law of angular motion can be written as

§—(Mat My _g:$ )-(&'.‘y_. , (4)
6—( : 2£.c,)6 l)o: T
where

Mq = Ma" derivative of moments due to aerodynamic drag,

if expressgd in terms of coefficients:

Ca) 3 g
(Cmq+ ) 74 S
M, -~ derivative of static pitching moment Cee d°q°S

Ma -- additional moment due to slight asymmetry

Reference [2] has made detailed description according to the
three-cycles theory. Since under general condition,
(i) <o)
2 z (5)
Hence, after linear assumption for angular motion of single degree

of freedom, Equation (4) may have solution of the following
simple form:

O=K-e¥: cosCur +8) + K, (6)
where .
-c-..’oq-‘l - ..
P YR ., (7)

1-I(C.'.'.C.‘)._;I?o cb.lo = .é'o“
L A (8)

As a speclal case of the three-cycle theory, this solution
can be represented by a rotating vector with the pitching angle ©
2s the projection of this vector on the vertical axis. The mag-
nitude of the vector is K. It rotates at an angular velocity of
w and 8 is the initial angular position. The K, in Equation (6)

3
is a small adjustment angle due to the moment Ma'
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With Equation (6) and the data set of angular motion of the
model (6,,%t.) ..., taken from the experiment and employ-
1°%1’ 1 1,2,3, n
ing the least square method to match them, the coefficients 1n the
equation can be determined.

The convergence criterion in the iterative matching process is

|SSR./SSR, — 1| < 10~ (9)
where

SSR = {6, — [K, = &b - cos Cwety + 8,) + KulP

im)

(10)

in which the subscript o indicates the first approximation value

of the parameter, while 2 and 1 indicate the results obtained after
two successive iteration. After the iteration is completed, the
static and dynamic stability derivatives of the pitching motion of
the model can be determined according to Equations (7) and (8) and
the w and X obtained.

3. Results znd discussion

Table 2 lists the experimental result of static and dynamic
stabllity derivatives for ec = 10° and 11° cones at M_ = 9.0.

A ; Table 2. Experimental result of statlc and dynamlc stability L
derivatives for ec = 10° and 11° cones iq
.0 - — - :‘1
test condicionl pee = o 0r motion parameters | aerodynamic  matching :
) . 1/m derivatives error :
———Tdynamic __TL__ obtained
test mo.| “ e Uodellinitial x| x 2 | @ | 24| Ca |Cug+Cal zRI| @ }
P no. fangle of ‘ ? Vv 4 ‘ t i
ac
1469 | 0.182 107 geatt .0135] 0.119{ —10.69 1158 [0.008¢| —1.76 | ~3.4 | 0.00056) 0.0025 l*
1470 §0.192 10—-4 10° .0154) 0.158 | —18.82| 1061 [0.0079 ~1.62! <6.9 | 0.00076} 0.0031 ,?
1478 | 0.174 to—3| 12° -01s1] 0.169 | —23.00 1200 /0.0089 ~1.75 | =7.2 |0.00229 0.0047 1
1476 | 0.183 10-6] 16° .0141] 0.260 | =3.84 | 977 0.0072] ~1.53| 1.2 | 0.00181f 0.0042 !
1432 ) 0.186; i—4i 4 0117 0.078 | ~9.08 | 1249 f0.0091] ~1.5¢ [ ~2.2 | 0.00036] 0.0027 14
1441 | 0.189 -9} 12° .02200 0.189 | —15.36] 1201 0.0088] ~1.46 | 3.9 | 0.00628] 0.0084 -
3 1451 1 0.194 1n-13 16* .0147[ 0.239 | ~12.32) 1170 0.0085] =1.42| 3.2 |'0.00128 0.0041 ™
. 1471 0195 1n-6) 10° .0060 0.181 | =12.79| 1218 0.0089| ~1.50 | =3.2 | 0.00433] 0.0063
. 1472 0.192 n-r} 20 .0103 0.287 | —10.79| 1200 0.0088] ~1.46 | ~2.7 |0.00752 0.0083
- 1474 | 0.19¢ -4 2¢° 01601 0.428 | =12.72 1192 [0.0087] =1.35 | =3.5 | 0.00199] 0.004?
e




The table does not only list the motion parameters and the
aerodynamic stability derivative of each experiment, but also
the probability error ¢ of matching. It reflects the deviation
of mathematical model from the actual angular motion. It is given
by the following expression:

2 s — 0. (11)
- o L.J———————-
o = 0.6745 p—y
N is the number of unknown coefficlents during the matehing pro-
cess. Here N = 5, n is the number of data points involved in
the matching.

As a typical angular motion of the model, experiment 1469 is
sketched in Figure 3. The solild line in the figure shows the
motion based on the substitution of the gasdynamic parameters
obtained from the matching into Equation (6).

The static stability derivative Cma indicate that within the
test range, the value of Cma is independent of the initial angle
of attack. It 1s malnly affected by the location of the center
of gravity of the model. This shows a relatlively good linearity
of the static stability of the conical models. The results are
plotted in Figure 4 and the values are found to be consistent with
Newton's theory which governs the solid line in the figure accord-
ing to the following expression [3]:

Ca, = —2.083 (—‘-‘f& - Ex cigo, « cort,) (12)

The reszult for the dynamic stability derivative can be seen

in Figure 5. It 1s observed that the pitching resistance moment
coefflcient obtalned 1s much higher than the Newton's value and
that the dispersion 1s relatively large for different experiments.
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Figure 3.
matched angular motion
o detected motion ,/

Typical detecting angular motion and

——matched motion

$

M,=9.0, Rew=l.6x103, ?ﬁ =0,0085, test No. 1469, model no.10-7
==1, + B, 4
Cma 1.76 mq Cma 3
10 0 — Ma=$.0 8,=10°
: Reqm=l5x10'/m —(Cay#Cu)
Qs .~ Newton's 10 Newton's
value . value
s o0
[-]
10 % S T R Y5 I R )
XL -$ o Me=20 0,=I0°
Reamlsx Kii/n
20 - [« 9
i : 0 Mawg.0 §=Il* {Cat G
e ! Rew=16x10'1/m " * Newton's
? I ' value
1.5k Newton's
‘ value
i b
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Figure 4, Experimental

result of statlic stability
for ec=1o°, 11° cones
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rigure 5. Experimental result
of dynamic stability for
ec=10°,11° cones

The dispersicn of the experimental results is closely related

to “™e inaccuracy in the determination of flicw parameters. As
indicated by Equation (8), the final value of the aerodynamic

resistance coefficlents, besides based on the resistance far .ors

obtained from matching, are also determined by the dimension of

model and the flow parameters.

The determination of the dynamic
pressure value 1s especially difficult due to possible error of
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relative large magnitude. The general trend reflected by several
sets of experimental data 1s much larger than the Newton's value.
The causes of this phenomena requires further analysis. From
the experimental result of the effect of Reynold's numbers and

the decrease in frequency on the aerodynamic resistance given by

[4], we observe that the dynamic stability multiplies with the

increase in frequency at low Reynold's number. Hence, with
)

ReD = 3x10 based on the characteristic length of the model in
our case and with a low frequency f = %g ~v 0.01, pitching resist-

ance derivatives higher than the Newton's value are expected con-
sequence. Furthermore, it should be pointed out that the models
used here are not sealed at the base. Hence, there practically
exists a large concave base which has a considerable effect on

the aerodynamic resistance coefficient. As mentioned before, the
dispersion of the resistance coefficient 1s quite considerable

and the results are essentially preliminary. However, such dis-
persion does not overshoot 1its order of magnitude. Also, the con-
sistency in the characteristic of the dynamic stability reflected
by different experiments demonstrates the possible prospect of

the measurement of dynamic derivatives with the free flight methcd
in the shock tunnel.
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LEAST SQUARES FINITE ELEMENT ANALYSIS OF STEADY HIGH SUBSONIC
PLANE POTENTIAL FLOWS

Jiang Bo-nan and Chal Jia-zhen

1. Method. The fundamental dimensionless equations for
steady, subsonic plane potential flow 1is

(1 —-"‘-:)...-“7',(.,+y.)+(x -%).,-'o

4y —v, =0, a=1+ ";l (ML — (& + )]

(1)

where x and y are the orthogonal coordinates normalized by the
characteristic length of the flow field, u. v and a are respect-
ively the velocity components and the local sound speed normal-
ized by the sound speed of the free stream, M  is the free stream
Mach number and y s the specific heat ratio.

The boundary conditions depend on the particular rroblem.

We will employ the iteration method to find the numerical solutlon
of the quasi-linear first order partial differential equation (1).
At each 1teratlion cycle, the least square finite element method 1is
used to solve the linearized equation set. Both.the variable stiff-
ness and the constant stiffness models are tried out. Thelr diff-
erence 1s reflected in the linearized equations, that is, the coeff-
icients are variables with the former model but are constants with
the latter.

1) Variable stiffness method. Let

A—(l-—%:), B-(l--:—:). c;:.;‘i"- (2)

Then Equation (1) can be rewritten as

1, + Bo, + C(u, + ¢, ) =0, w,—9,=0 (3)
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Coefficients A, B, C are regarded as known quantitiles and
are determined by the velocity fileld solved in the preceding iter-
ation cycle. The new values ¢f u and v are determined with the
following method. Firstly, the flow field are divided into finite
elements. In order to simulate boundaries of complicated pro-
file, quadrilateral elements with eight nodal points are employed
[(1]. The two velocity components at each node are taken as the
main unknowns. The coordinates and the unknowns of any point 1n
the element can be expressed as

. {:}-2":(5:"){::}. (%)

{my
“V o “ (5)
{”} .IZ‘NCCE:'I){“}
where Ni(E,n) 1s the shape function, x,, y, are the coordinates

of the 1 th node of the element, Uy, vy are the unknown velocity
components of the 1 th node of the element.

Equation (5) is practically the expression of approximate solu-
tion of equation (1). Generally, Egquation (1) are not satisfied
exactly no matter how ui and vy are chosen. That 1s for any point
in the element, there exlst residues:

, .
R, = > [CAN;, + CNy,))wy + (BN, + CN, vl (6)
=}

: .
Ry= E (Niy#i = Niwwy)

(]

Employlng the least square methed [2], u, and v, are chosen such
that the residues are minimized, that i1s to construct a second order

functional (assuming that there 1s only one element)

= ” CR! + oR])dxdy (7)

%

Received October 17, 1978.

54




R B 4 Mt

In the above expression, the integration 1s conducted in
the reglion Se and o is a positive constant. Generally, a = 1 is
taken. This indicates that the continuity equation and the irro-
tational equation are equally important. Taking very small value
of I with respect to Uys Yy the linear algebraic equations with

respect to Uy s vy are obtained:

oo (" (R
K G Ll
LK) lK:ialq. IR L e

3
. 4

(Ku) lKnl'"'[lg'ul‘ L{..} ()

¥a
Key: (1) cemetery

(8)

In which the sub-matrix of the stiffness matrix of the element is

ABN,,N,, + ACN,..N,..
+ BCNuyNiny +(C*=INi/Ni.e
(K,jJ=\\]-ce-- secesssrsiesacrsionrrse ] ‘Wepetsreprocensecnsesseccsce | dxdy
% | ABN. N, + ACNLNLe .. § BNuyNiy + BCCN,, N1
-+ BCN,,,N;,,'}'(C"‘G)N;,W;,, . + _N‘.,N',,) + (C‘ + G?Ng.,Np,,

AxNthiol + A C(NlolNis]
+ Nh'NIal) + (C‘ + a)N‘.A'Nh'

see

spe

(9

The integral in the above equation 1s calculated numerically
by 2x2 Gaussian integration formula. The sub-vector {Fi} of the
loading vector of the element l1s the zero vector.

For aggregates of many elements the overall rigidity matrix
and the overall locad vector can be obtained on the basls of
normal aggregate rules. After considering boundary condition
corrections, the entire set of equations can be obtained. It
should be noted that the entire load vector which has undergone
boundary condition correcticn 1s no longer a zero vector.

\ »

2)  Constant stiffness methed.
Equation (1) 1s rewritten as

vt~ @=—e, =0 (10)
where '

jo- [l + 1%“‘(". -+ "’)]"[','c + wou, + 05) + v, )

(11)
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Here f 1s known, and 1s determined by the velocity field given

in the preceding iteration. Taking A =B =1, C = 0 in Equation
(9), the expression for the stiffness sub-matrix of the constant
stiffness method is obtained. The sub-vector of the loading vec-
tor of the element is

{r)= “ {;z:: a sdy (12)

2. Some problems in the calculation.

Since the velocity component normal to the solid boundary is
zero, the 1inclined boundary condition is utilized, that is, at the
nodal points on the solid boundary, the tangential and the normal
velocity components are taken as unknowns.

The symmetry of the stiffness matrix 1s favorable to the cal-
culation. The following methods are used to solve the linear alge-
braic equation: the triangular decomposing method of variable band
width one-dimensionally stored total stiffness matrix and the elim-~
ination method.

Set £ = 0 in Equations (10), and the flow fleld obtained by
solving this incompressible problem 1s taken as the 1nitial field.
At all the nodal polnts of the fleld, the problem is considered
convergent if the relative variation of two successive values of
the dimensionless density p™ [1 + u-l(M' —( + v’))]
is less than a glven small quantity €.

3. Numerical examples

Several typical examples are calculated with ALGOL 60 language
on the T9-16 machine.
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1) Flow past a circular cylinder. The flow condition at
seven times the radius of the cylinder is considered undisturbed
from the free stream. One quarter of the circular cylinder is
divided into 2x2 or 4x5 elements. € is taken as 0.0001 and 0.0009
respectively. The calculated results are shown in Table 1 and
Figure 1. It can be observed that even when M_ reaches the crit-
ical Mach number 0.42, the variable stiffness method is still con-
verging rapidly.

Table 1. Number of iterations for flow past circular cylinder

No. of M
Calculation inter- ®10.20 0.30 0.40 0.42 0.45
scheme ations

constant s3=1iff-
4 ness method 2 3 8 32 no convergence

elements variable stiff-
ness method 2
constant stiff-

20 neww method 3
elements variable stiff-
hess method 2

4 4 7

(o, N (V¥

27 no convergence

3 5

n
)

1.2
10
0.8
N 06
04

0.2¢

Qo

Figure 1. Mach number on the surface of the circular

cylinder
o finite element (variable stiffness method)

—result from reference [3]
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2) Flow past a symmetric airfoil. The symmetrical NACA
0012 airfoll with zero angle of attack is calculated. The upper
half region of the airfoll is divided into 5x12 elements and
€ = 0.0001 1s taken. Convergence is achieved with the variable

stiffness method after six iterations (Figure 2). There is no
convergence 1f the constant stiffness method 1is used.

4, Discussion

With the above presentation, 1t can be concluded that the
least square finlite element method 1s feasible for steady sub-
onic potential flows. The variable stiffness method is especia:ly
suliable fcr high subsonic flows.

12
1t
10
(1] d
os
a7
06
as
ae}
u-
al
01 .
D U S SA S S o

o&luun‘f]ﬁﬂ&ﬁ'“ﬁ’ln

Figure 2. Mach number on the airfoil surface
o finite element (variable stiffness method)
—— result from reference [4]

NACA 0012 M, = 0.72 0° angle of attack

Nowadays many finite element methods [5] have been proposed
for solving problems of compressible potential flows. The stream
function ¢ or the potential function ¢ 1s considered as the main

unknown quantities in most methods. There are several advantages
of the present method. Firstly, the velocltles at the nodes are

obtained directly, avoiding any numerical differentiation. Hence,
relatively coarse mesh can be employed. Secondly, the difficulty
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of determining the density at hilgh subsonic Mach numbers when
using ¥ 1s also avoided. Thirdly, the boundary conditions are

= simpler, in contrast with the cases when ¢ is employed. Fourthly,

the continuity requlrement of the shape function is reduced from vl
C' to C° as compared with the least square method for ¢ or ¢. §

Finally, we thank Professor Lo Shi-Jun for hils valuable advice
and Mr. Sun Huel-min for revising the computer program.
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THE AERODYNAMICAL ANALYSIS OF BODY IN HYPERSONIC SOURCE FLOW
FIELD

Ling Guo-can
(Institute of Mechanics, Academia Sinica)

The hypersonic source flow fileld 1s a typical non-uniform
free stream flow fleld. Many high speed, high enthalpy experi-
mental systems, such as shock tunnels equipped with conical
nozzles, the gun wind tunnels, the electric arc wind tunnels,
etc., are characterized by hypersonic spherical expansion. Cer-
taln external flows around bodies also display the same character-
istics. Simple but accurate analytical methods are required to
determine the aerodynamic force on the body and the effects on the
pressure distribution and various aerodynamic characteristics for
such non-uniform free stream condition. Some efforts have been
made [1-7] but no satisfactory analytical results have been pre-
sented so far. Based on the characteristics of the hypersonic
source flow fleld and the simple form of the potential function,
the present study obtained various aerodynamic coefficients by
means of Newton's theory. Under the condition of small angle of
attack, the analytical results are satisfactory. Due to practical
requirements, analysis on the effects of the non-uniformity of the
free stream 1s emphasized. Agreement between the calculated results
and the experimental data i1s satilsfactory.

1. Hypersonic source flow field

A TR ANMNFTORY 5. TR af S 17 ra s e o

At hypersonic conditons, M>>1, and when M2(Y-l)/2>>1, the
following relations among physical properties in steady, ideal
point source flow are obtained by integrating the basic equations:

oo ery

V = constant ’ p= '.(r/r.)"", p™~ Po(f/'o)." M- M.('/’.)rq (l)

when r is the distance of any point in space from the point source.
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The subscript denotes certain reference values in the flow field.
Note that the velocity of the above flow field is almost constant.
Hence, the corresponding potential function wvaries with r only,
that 1is @@=rV +C . This potential function provides some con-
venience for the analysis following. If the point source is
located at the coordinates €, 0,{),on the symmetric surface xoz of
the Cartesian coordlnates Oxyz, then the velocity potential and
the veloclity distribution should be:

=V GHEP+y+a+iP +C . : (2)
Ve=(z + Licosa)VL™, V,=yVL™, Vo (s + LysinadV L™

L =+/(z + Leycosa) + y' + (s + Lysina)

in which Lo is the distance from the point source to the origin,
and a is the angle between Lo and the x-axis.

2. Pressure distribution

Let the geometry of the body of revolution in the flow field
described above be  7» = f(#). , and the unit vector normal to the
body surface be  mn, = sindi — cosdcosfj — cosdsinfk, & = 1g™'(dr,/ds),

The elevatlion angle of the line joining the point source and the
vortex of the body from the Ox-axis ls defined as the angle of
attack a of the non-uniform free-stream. The Newton's hypersonic
impulse theory glves the pressure coefficient, C,, =gV,  8)/q

of any point on the upwind surface of the body. The subscript b
denotes the local freestream parameters at any point on the body
surface given by Equations (1) and (2), and x,y,z satisfy the equa-
tion of the body profile. q, = pOV2/2 is the local free stream
dynamic pressure at the vertex of the body. If the distance L

from the point source to the body vertex is taken as the character-

istic length of the flow and the reference value for normalization,
then the pressure coefficlent at any point on the upwind surface of
the body 1is




Coim _2[(F + cosa)f —~] — sinasing)
PO+ P + 2icosa + P + 2] stmadag] (3)

Apparently, when the point source is infinitely far away from the
body, the above expression reduces down to the well-known Newton's
formula of the uniform flow.

For conical bodies }J=gwge, and the pressure distribution
on the conical surface 1is

Co=CpLl™, Cyy=2cosasingd — sinacosdsin ) }

Le=[143%+27cosa+ 3158 + 27g8snasing)t ()

The subscript U denotes the uniform free stream values. Hence,
there exists a simple transformation relation between the pressure
coefficient on the conical surface in source flow field and the
pressure coefficlent in the corresponding uniform flow field. The
former can be expressed as a function of the uniform flow values
and L, the dimensionless distance from the point source to the
conical surface. The pressure coefflcient decreases along the

conical surface, hence loslng the characteristics of conical flows.
Thils effect is greater when the point source is closer to the body.

For a spherical surface of radius f=R—(R-¥¥, . at
zero angle of attack, the pressure coefficient on the upwind sur-
face is

C. = 2[R(sin6 —1) + sin0)
* {14 2R(1 — ¢in8) +{2R(1 — ¢ 6)] (5)

where & is the clrcumferential angle as shown Iin Figure 2. At the
stagnation point, & = n/2. The region of action is
in™{R/(1 + )1 <6< #/2,

Figures 1 and 2 present the calculated relative values
(Cpo =~ €pd/Cor  and Co/Consmty of the pressure distribution on the
conlcal surface and the spherical surface respectively.

This paper was received on December 18, 1978.
1) This paper was presented at the Chinese Institute of Mechanies' First Convention
of Shock Tunnel, November 4-12, 1978.
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Figure 1. Pressure distribution on the conical surface (a=0°)
calculated values according to Equation (4)

A M=1031 =1 qun wind tumel experiment [7]

oON=935 sa=15* shock tunnel experiment (large cone) [3]

e M=m3$ gmpse Shock tunnel experiment (small cane) (3]

P M=) gm0 shock tunnel experiment

8 NM=235 s=i15* shock tunnel experiment (large cone) [3]

G M=) Je5 shock tunnel experiment (small cone) [3]

W 0 80‘ 0 90

Figure 2. ressure distribution on the spherical surface (a=0°)
——calculated values according to Equation (5)

o R=0.009 Me=15.9 sphere-cylinder experiment [5]

¢ R=0.0327 M=8.6 sphere—cone experiment

o R=0.0302 M =10.31 sphere-cme exmrjmnt [9]
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3. Aerodynamic coefficients of typilcal bodies

By applying the coefficient formula (3) obtained, the nor-
mal force coefficient, axial force coefficient, pitching moment
coeff;cient and the pressure center coefficient of the body of
revolution at any angle of attack can be calculated directly:

Cui™= —~ ;r—.g S C,}sinfdgdi, Cqy = —r-is, s ,,ﬁ’dﬁd:

2" c.dx + Ayvinpapds, 7o = CudCu (6)

Cus = —

=Fh] Jo

where &z, ==s,/l,! and rg are the body length and the base radius
respectively. The upper limits of the integrations .8 are
the dividing line of the upwind and downwind surfaces and are
determined by the zero pressure condition on the body surface.
For conical bodles, o&¥8,p, ==/2,37, =1; >4, f, = sin~'(igs/1ga), &, = I,
For spherical bodies, g, w= ga"*{[Rcosa—(R + ;ma);uﬁi-(ji — #2Y1tCsina)Y,
For small angle of attack when F/R&(1+ BRI 4, = /2,

For small angle of attack, the higher order terms of a can bte
neglected. Also when the polnt source 1is considerably far from
the body, the distance of any point on the body from the point
source is almost equal to its projection on the x-axis. Simple
analytical expressions for aerodynamic coefficients are obtained
through integration. The position of the point source still has
a sufficiently large range 1n these expressions. For cones at

&8 , there are certaln correlations between the aerodynamic
coefficients 1in the polint source flow fleld and the corresponding
coefficients in the uniform flow. The normal force cocefficients,
axial force coefficients, static derivative CNa’ pressure center
coefficient, pitching moment coefficlent in the point source flow

field can all be expressed by the product of the corresponding
value in the uniform flow field and the correlation function )

s e
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Cve= Cxupi(D)s Crim= Crupi(1)s  Cnae ™ ‘Cu-c.ﬂua) } (7)
;" £, = o, ®1)s Cui= Cuu@{Dei(1) - ‘ y
- Cap = 26co8 8, Cry = (o + 215 8)cos' 8, c...,-ch.-a} (8)
' ¥, = 2/3wc’3, Cuy=4/3a .
@D =G +DBA+IP, eDm U+ 1307 (9)

TR

] The correlation functions (1), ¢{l) depends on the dimensionless
characteristic quantity ), only, which denotes the relative posi-
tion of the body in the point source flow field. Figure 3 shows
the variation curve of l=—e@ll)versus ! . The relative variation
of the aerodynamic coefficients due to the non-uniformity of the

St L

free stream under the condition of different point source posi-
tions can be determined according to this curve.
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SYMBOL __CONTENT IR Ref
¢ | pressure center experiment 0 7 |small 16 5
¢ | pressure center experiment 0 6 {small (20 |5
® | pressure center experiment 0 10 {7,5,101(8.2
© | pressure center modification calculation 0 small|small 5
| & | pressure center modification calculation 16 |2-15 7
w | normal force coefficient experiment D 7 5 [16 |5
: o | axial force coefficient modification calculationnf.006 16 [2-15 7
v | normal force coefficient modification calculatioc fLOOG 16 |2-15 7

For the spherical section and for L,<(1+R)™* | the following
expressions can be obtalned after some complicated integrations:

.y

Cny™= R, + RJ. + R;lll[l + 2§(l + k)’a] 1

_a {
2 R. R
TIFIEQYOL O zk(ﬁ- R)I.l‘}

: - 1 = 3
3 O = TR I, 19+ S ¥ Sh+ Sll £ 2RQ+ B [ (10)

wo -

S,
* TG +ﬁ)l.} -
Cus ™ clh/’-

e

where

R, = 2.5 + 14K + 28R + 24R' + 8K, R, = 2R(} + 3K + 2R) ' §
Ry= ~(3 + 12R+16R*+38R"), R, = —(3+18R+40R'+40R*+16R") ;
Ry = 0.5 + 4R + 128’ + 16R’ + 8R! . .
§ = 1+7R+20R +30R' + 24R'+8R%,  §,m¢R+20K'+32R' +20R'+4R*
S = —Q2R + 6R + 6R* + 2R), 5= = (3+ISR+28R'+24R' +8R") (11)
Sy = =~(1 + 7R + 20R' + 30K’ + 24R* + 8R") :i; R

R=R/Liy l.=1./R JRACEE I
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le 1s the thickness of the spherical body in the x-direction.
When R-g , the above limits become the Newton's formulae in the
uniform flow. Figure 4 shows the variation curve of the deriva-
tives of normal force coefficlent and axial force coefficients of

the spherical section vs. the point source position.

Figure 4. Cyo @nd Cpg of the spherical section

For a slender cone-sphere combinatlion of bluntness n at asd,
and for sin év§, cos §v1, the following can be obtained:

CNu'-c - cNu’l’ + Cuans Crioms ™ cruﬂ' + Crars Cosoms = cN-u’l. + Cxen:

o [C2 B ]

(12)

and
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Cnay ™ %“Kl(ﬂi Eu/C)Q’(fh Elc ‘) )

Cra = 5 (& + 260Ky Ra/8)QCn, Bas 0)

Cori ™ Cun;c,ac

s = 2 K(n, Ry/8) 1 1 =8)
T I K Ref) T — a1 —8)  T—qCl — )

Ko Rafd) ~ QR [, Gt aRyeXLt Ry/s 'z]
a+ "’ ol Gt RyeX1t nk'.m'

Kin» Ro/8) =3 [

(13}

Q +R./a>‘ ‘(l +.,§./a)'] :
0Cn, Rur & = [1 = aRe (L=228)[ ™ By By

The above results indicate that the aerodynamic coeffi-
clencles of a slender cone sphere of definite profile in the
point source flow fleld at small angle of attack depend only on
the dimensionless parameter R (or ﬁé), which characterizes the
relative position of the body in the point source flow field.

L, Comparison of the results

Figures 1-3 and Figures 5 and 6 show the comparison between
calculation results and the experimental data. The force mea-
surement accuracy of current impulsive wind tunnel (about 5-10%)
i1s one order of magnitude lower than that of the ordinary wind
tunnel. Some of them reach around 17%. Since there is a lack of
experimental data for single spherical section, Figure 2 adopts
the results from the sphere-cone and the sphere-cylinder. Hence,
the data close to the stagnation point at the head should be taken.
The accurate solution of the pressure distribution on the cone of
the uniform flow 1s taken from [10]. The pressure distribution and
the relative variation of aercdynamic coefficients due to hyper-
sonic point- source free stream calculated here are found to match
with the experimental results. The calculated aercdynamic coeffi-
clents of the sphere-cone comblnation also agree quite well with
the experimental results. They are also consistent with the modi-
fied values given by [5,7]. Compared with the uniform free stream
cordition, the source flow causes the pressure center of the sphere-cone to move
forward and the normal and axial forceggoefficients to decrease. For slender
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Figure 5. Normal force coefficient and pitching moment coeffi-
cient of sphere-cone
¢ calculation by Equations (12), (13)
¢ gun-wind tunnel experiment [7] § =12.5° n =0-0.5 a=2-15°
& gun wind tunnel experiment [7] &§ =16° n =0-0.5 a=0-16°
® gun wind tunnel experiment [7] & =20° n =0-0.5 a=0-17°
-0 uniform flow values modified by the present method
- o uniform fiow values modified by [7]
! a uniform flow values modified by [7]
‘ 8 uniform flow values modified by [7]
-—~——experimental values of uniform flow [12]

]
01 o . a=10’
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' Figure 6. Pressure center of sphere-cone
= A shock tunnel experimental values
A A pressure center of the uniform flow modified by the present
’ method
1 n=0.15 a=10° M=8.2, 13.5 n=0.15 a=10° M=8.2, 13.5

——calculated value according to the uniform flow theory ;
n=0.15 a=10° 5
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cones at small angle of attack, the pressure center moves forward by 1—eJl).
When ]>0.03, that variation is more than 1%. The relative

variation of both the normal and axial force coefficients
is 1=@(l) . When I>004 | the variation is more than 10%.
For the hypersonic uniform free stream problem, the Newton's theory

'y

Rt A Tk e
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is effective in determining the pressure distribution and aero-
dynamic coefficlents, provided that the shock stays close to the
body surface [11,12]. For hypersonic source flow field, it also
s displays a satisfactory accuracy in analyzing the aerodynamic
effects due to the non-uniformity of free stream.
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